US009104352B2

a2 United States Patent

Will et al.

US 9,104,352 B2
Aug. 11, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)
")

@

(22)

(65)

(30)

Jun. 29, 2011

(1)

(52)

(58)

METHOD, APPARATUS AND SYSTEM FOR
RENDERING AN OBJECT ON A PAGE

Inventors: Alexander Will, Randwick (AU);
Thomas Benjamin Sanjay Thomas,
Seattle, WA (US); Delilah Gloria
Slack-Smith, Bardwell Park (AU);
Cuong Hung Robert Cao, Revesby
(AU); Sheng Wu, Chatswood (AU)

Assignee: Canon Kabushiki Kaisha, Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 371 days.

Appl. No.: 13/533,695

Filed: Jun. 26, 2012

Prior Publication Data

US 2013/0003085 A1l Jan. 3, 2013
Foreign Application Priority Data

(AU) 2011203173

Int. Cl1.
GO6K 15/00
GO6F 3/12
GO6T 11/60
GO6F 15/00
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)

GOGF 3/1211 (2013.01); GOGF 3/1245
(2013.01); GOGF 3/1285 (2013.01); GO6T
11/60 (2013.01)

Field of Classification Search
CPC GO3G 15/6585; G03G 15/5058; GO6K

Receive drawing commands
Convert drawing commands to
a standardized format
Interpret the file format into an
intermediate graphical object

15/02; GO6K 15/1822; GO6K 2215/0085;

HO4N 1/32; HO4N 1/387; HO4N 1/34; HO4N

2201/0092; GOG6F 3/1211; GOGF 3/1245;

GOG6F 3/1285; GO6T 11/60

USPC 358/1.1,1.2,1.5,1.9,2.1,3.27,1.18
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,515,675 Bl 2/2003 Bourdev

7,209,258 Bl 4/2007 Markovic et al.
7,262,782 Bl 8/2007 Parenteau et al.
7,692,652 B2 4/2010 Parenteau et al.

2004/0249730 Al* 12/2004 Moritaetal. 705/30

* cited by examiner

Primary Examiner — Thierry L. Pham
(74) Attorney, Agent, or Firm — Canon USA Inc. IP
Division

(57) ABSTRACT

A method of rendering a graphical object (e.g., 801) on apage
(800), is disclosed. A region of the page containing the
graphical object (801) is marked as output incompatible
based on the graphical object (801) being output incompat-
ible. A bounding box comprising the marked region is deter-
mined. A proportion of a number of the regions marked as
output incompatible are determined to a total number of
regions in the bounding box. A further region within the
bounding box is marked as output incompatible to increase
the determined proportion above a threshold. The graphical
object in the marked region and the further marked region is
converted into an output compatible graphical object if the
determined proportion is above the threshold. The output
compatible graphical object is rendered.

4 Claims, 12 Drawing Sheets

201

200

203

205

Store the intermediate
graphical object in a self-
retained display list

/\/207

—

page

Map the graphical object into
one or more regions on the

/\/zoe

processed ?

Mark regions of the page as
output incompatible

Afother intermediate.
graphics object to be

211

212

Converting the regions marked
as output incompatible to 213
output compatible regions

Rendering the graphical object
on the page

215

U.S. Patent Aug. 11, 2015 Sheet 1 of 12 US 9,104,352 B2
s T N"T N
7 -~
(Wide-Area) {
) Communications 4
Network 120 _
Printer 115 |——)
\ A - h — r.\j\\\
Microphone A 124 \
180 ‘
—= /121 e
- .
117 V\J (Local-Area)
* Communications
{ Network 122
T] w A
odem ,
:D_ 116 \/\' 100
¢ ! 101
Y y Appl. P
Audio-Video ||I/O Interfaces|| Local Net. pp1.33rog g::\:ii%i
Interface 107 108 Ifface 111 — 109
HDD 110 —
1 t t t 104
- I
t_f 118 ¢ 119
Processor I/O Interface Memory Optical Disk
105 113 106 Drive 112
TA A f A
\

Keyboard 102

|

) 0

Scanner 128

Disk Storage

103 Medium L‘Z_ﬁ

Camera 127

Fig. 1A

U.S. Patent Aug. 11, 2015 Sheet 2 of 12 US 9,104,352 B2
134 133
[/7
[Instruction (Part 1) 128 | — | Data 135 |
131 [Instruction iPart 2)129 | Data 136 L 132
| Instruction 130 | Data 137
\ J
ROM 149
posT] [BlOS Bootstrap Operating
150 151 Loader 152 System 153

Input Variables 154

Output Variables 161

155 162
156 163
157 164
Intermediate Variables 158
[159 T 166 T
L 160 1 167 1
119 f_t 104
ya
?/ 118
105 '
Interface 142
141 148

Control Unit 139

Reg. 144 (Instruction)

ALU 140

r
|

Reg. 145

| Reg. 146 (Data)

|
i
|

Fig. 1B

U.S. Patent

Aug. 11, 2015 Sheet 3 of 12

US 9,104,352 B2

Receive drawing commands

v

Convert drawing commands to
a standardized format

v

Interpret the file format into an
intermediate graphical object

v

Store the intermediate
graphical object in a self-
retained display list

%

Map the graphical object into
one or more regions on the

page

v

Mark regions of the page as

output incompatible

Ahother intermediate
graphics object to be
processed ?

212

Converting the regions marked
as output incompatible to
output compatible regions

y

Rendering the graphical object
on the page

End

U.S. Patent Aug. 11, 2015 Sheet 4 of 12 US 9,104,352 B2

300

Are all touched
regions dirty?

340

printer-
compatible
object?

350

Big non-scaled 370

image?

v

Store the printer
360 compatible object for

r\j printing 375
L_» Mark touched

4
regions as dirty Mark fully covered f\/

regions as clean

no

L

End Fig. 3

U.S. Patent

Aug. 11, 2015 Sheet 5 of 12 US 9,104,352 B2

400

./

Receive or determine the
object’s bounding box

410
/\/

l

Determining which regions are
touched by the object’s
bounding box

l

Store details of touched
regions

430

End

U.S. Patent Aug. 11, 2015 Sheet 6 of 12 US 9,104,352 B2

500

501

Merge dirty regions ™~

to region_sets

510

Access a new /\—/

region_set

1 520 Fig. 5
Render the /\—j

region_set area into
image

l 530
Output the rendered /\/

image in printer-
recognizable format

Any more region_sets
to be processed ?

U.S. Patent Aug. 11, 2015 Sheet 7 of 12 US 9,104,352 B2

N 600
Process each row of regions /

to region_sets 610

! Y

Get the first_row of
region_sets

615

ny more rows O
region_sets to be
processed ?

~J End

Get a next row of
region_sets

v

Scan from left to right, find two /\/

candidate region_set from
first_row & second_row

650

num_dirty_regions
num_total_regions) >=
merge_threshold

yes
670

From left to right, use the 660 Merge the two

right region_set as /\/ region_sets as the next
candidate for next merging candidate

690

680 (_)
Fifid the next region_

from the first_row or Store the merge result to be

second_row as the other " o the new row as first_row
candidate

yes

U.S. Patent Aug. 11, 2015 Sheet 8 of 12 US 9,104,352 B2

700

All rows of regions
processed?

Scan the regions from left to

right, merge a group of 720
adjacent dirty regions to a /\/

region_set, as the
first_candiate

730

groups of adjace
dirty regions
processed 7

no

Find next group of adjacent

dirty regions to merge into /\235

second candidate

;

Merge the two region sets

and all clean regions in /\fo
between

770

/,\J

Set the first_condidate
as the
second_candidate

760

~~

Merge the first and
second candidate region
sets a new region_set

num_dirty_regions
num_total_regions) >=
merge_threshold

no

U.S. Patent Aug. 11, 2015 Sheet 9 of 12 US 9,104,352 B2

10

11

13
14

15 812 .

16

17

18

19

20

21

Fig. 8A

US 9,104,352 B2

Sheet 10 of 12

Aug. 11, 2015

800

Fig. 8B

U.S. Patent

.,,
NN

R
N ,.x/f../z. 0N

US 9,104,352 B2

Sheet 11 of 12

Aug. 11, 2015

U.S. Patent

800

“

Jernle AL
/‘/_,a:g{/: IO,

A
%

%
0

“
58

i

s

7

10

11

12

13

Fig. 8C

U.S. Patent Aug. 11, 2015 Sheet 12 of 12 US 9,104,352 B2

10

" 950

13

14

15

16

17

18

19

20

21

US 9,104,352 B2

1

METHOD, APPARATUS AND SYSTEM FOR
RENDERING AN OBJECT ON A PAGE

REFERENCE TO RELATED PATENT
APPLICATION

This application claims priority under 35 U.S.C. §119 from
Australian Patent Application No. 2011203173, filed Jun. 29,
2011, which is hereby incorporated by reference in its entirety
as if fully set forth herein.

FIELD OF INVENTION

The current invention relates to graphics processing and, in
particular, to a method and apparatus for rendering an object
on a page. The current invention also relates to a computer
program product including a computer readable medium hav-
ing recorded thereon a computer program for rendering an
object on a page.

DESCRIPTION OF BACKGROUND ART

The printing process in modern operating systems, typi-
cally involves steps of invoking drawing functions, convert-
ing the drawing functions into a standardized format (e.g.
PDF or XPS), and spooling the standardized format drawing
functions to a printer driver. The printer driver may contain an
interpreter which parses the standardized format drawing
functions, and converts the standardized format drawing
functions into drawing instructions that are accepted by a
printer driver rendering engine. The printer driver rendering
engine typically renders the drawing instructions to pixels,
and sends the pixels to a printer which prints the pixels onto
paper.

Some printers have limited rendering functionality. A
printer driver used by such printers may contain an interpreter
that parse the standardized format into certain printer-recog-
nizable graphical objects and drawing instructions that are
accepted by the printer. The printer driver sends the generated
graphical objects and drawing instructions to the printer. The
printer then renders the graphical objects and drawing
instructions into pixels.

Conventional methods for converting graphical objects
and drawing instructions parsed from the standardized format
into limited, printer-supported graphical objects, typically
include processes for translating any printer-compatible
graphical objects and drawing instructions directly into a
printer-recognizable format. Such methods typically also
include processes for rendering any printer-incompatible
graphical objects and drawing instructions into pixels. The
conventional methods for converting graphical objects and
drawing instructions into limited, printer-supported graphical
objects may result in a large amount of image data being sent
to the printer, especially when there is lots of overlap between
printer-compatible objects and printer-incompatible objects.
The large amount of image data often results in a slow print-
ing speed.

Thus, a need clearly exists for a better and more efficient
printing method that will result in a faster printing speed.

SUMMARY OF THE INVENTION

It is an object of the present invention to substantially
overcome, or at least ameliorate, one or more disadvantages
of existing arrangements.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to one aspect of the present disclosure there is
provided a method of rendering a graphical object on a page,
the method including:

marking a region of the page containing the graphical
object as output incompatible based on the graphical object
being output incompatible;

determining a bounding box including the marked region;

determining a proportion of a number of the regions
marked as output incompatible to a total number of regions in
the bounding box;

marking a further region within the bounding box as output
incompatible to increase the determined proportion above a
threshold;

converting the graphical object in the marked region and
the further marked region into an output compatible graphical
object if the determined proportion is above the threshold;
and

rendering the output compatible graphical object.

According to another aspect of the present disclosure there
is provided a method of rendering a graphical object on a
page, the method including:

marking a first region of the page containing the graphical
object as output incompatible based on the graphical object
being output incompatible;

determining a distance of a second region from the first
region;

marking the second region as output incompatible, if the
determined distance satisfies a threshold;

converting graphical objects within the first and the second
region as output compatible; and

rendering the output compatible objects.

According to still another aspect of the present disclosure
there is provided a method of rendering a graphical object on
a page, the method including:

determining a size of the graphical object to be rendered on
the page;

marking a region of the page as output incompatible if (a)
the graphical object is output incompatible, and (b) the deter-
mined size of the graphical object is larger than a threshold;

converting the graphical object into an output compatible
graphical object; and

rendering the output compatible object to a renderer for
rendering.

According to still another aspect of the present disclosure
there is provided a system for rendering a graphical object on
a page, the system including:

a memory for storing data and a computer program;

a processor coupled to the memory for executing the com-
puter program, the computer program including instructions
for:

marking a region of the page containing the graphical

object as output incompatible based on the graphical
object being output incompatible;

determining a bounding box including the marked region;

determining a proportion of a number of the regions

marked as output incompatible to a total number of
regions in the bounding box;

marking a further region within the bounding box as output

incompatible to increase the determined proportion
above a threshold;

converting the graphical objects in the marked region and

the further marked region into an output compatible
graphical object if the determined proportion is above
the threshold; and

rendering the output compatible graphical object.

US 9,104,352 B2

3

According to still another aspect of the present disclosure
there is provided a system for rendering a graphical object on
a page, the system including:

a memory for storing data and a computer program;

aprocessor coupled to the memory for executing the com-
puter program, the computer program including instructions
for:

marking a first region of the page containing the graphical

object as output incompatible based on the graphical
object being output incompatible;

determining a distance of a second region from the first

region;

marking the second region as output incompatible, if the

determined distance satisfies a threshold;

converting graphical objects within the first and the second

region as output compatible; and

rendering the output compatible graphical objects.

According to still another aspect of the present disclosure
there is provided an apparatus for rendering a graphical object
on a page, the apparatus including:

means for marking a region of the page as output incom-
patible based on the mapped graphical object being output
incompatible;

means for determining a bounding box including the
marked region;

means for determining a proportion of a number of the
regions marked as output incompatible to a total number of
regions in the bounding box;

means for marking a further region within the bounding
box as output incompatible to increase the determined pro-
portion above a threshold;

means for converting the graphical object in the marked
region and the further marked region into an output compat-
ible graphical object if the determined proportion is above the
threshold; and

means for rendering the output compatible graphical
object.

According to still another aspect of the present disclosure
there is provided an apparatus for rendering a graphical object
on a page, the apparatus including:

means for marking a first region of the page containing the
graphical object as output incompatible based on the graphi-
cal object being output incompatible;

means for determining a distance of a second region from
the first region;

means for marking the second region as output incompat-
ible, if the determined distance satisfies a threshold;

means for converting graphical objects within the first and
the second region as output compatible; and

means for rendering the output compatible objects.

According to still another aspect of the present disclosure
there is provided a computer readable medium having a com-
puter program recorded thereon for rendering a graphical
object on a page, the computer program including:

code for marking a region of the page containing the
graphical object as output incompatible based on the graphi-
cal object being output incompatible;

code for determining a bounding box including the marked
region;

code for determining a proportion of a number of the
regions marked as output incompatible to a total number of
regions in the bounding box;

code for marking a further region within the bounding box
as output incompatible to increase the determined proportion
above a threshold;

10

15

20

25

30

35

40

45

50

55

60

65

4

code for converting the graphical object in the marked
region and the further marked region into an output compat-
ible graphical object if the determined proportion is above the
threshold; and

code for rendering the output compatible graphical object.

According to still another aspect of the present disclosure
there is provided a computer readable medium having a com-
puter program recorded thereon for rendering a graphical
object on a page, the computer program including:

code for marking a first region of the page containing the
graphical object as output incompatible based on the graphi-
cal object being output incompatible;

code for determining a distance of a second region from the
first region;

code for marking the second region as output incompatible,
if the determined distance satisfies a threshold;

code for converting graphical objects within the first and
the second region as output compatible; and

code for rendering the output compatible objects.

Other aspects of the invention are also disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more embodiments of the invention will now be
described with reference to the following drawings, in which:

FIGS. 1A and 1B form a schematic block diagram of a
general purpose computer system upon which arrangements
described may be practiced;

FIG. 2 is a schematic flow diagram showing a method of
rendering a graphical object on a page;

FIG. 3 is a schematic flow diagram showing a method of
marking one or more regions of the page as output incompat-
ible, as used in the method of FIG. 2;

FIG. 4 is a schematic flow diagram showing a method of
mapping a graphical object onto one or more corresponding
regions of a page, as used in the method of FIG. 2; and

FIG. 5 is a schematic flow diagram showing a method of
converting regions marked as output incompatible to output
compatible regions, as used in the method of FIG. 1;

FIG. 6 is a schematic flow diagram showing a method of
merging regions of the page to be printed into groups, as used
in the method of FIG. 5;

FIG. 7 is a schematic flow diagram showing a method of
processing each row of regions to be merged, as used in the
method of FIG. 6;

FIG. 8A shows an example page which contains several
graphical objects to be printed;

FIG. 8B shows the result of the example in FIG. 8A, after
the method of FIG. 7 has been performed on the page of FI1G.
8A;

FIG. 8C shows the result of the example in FIG. 8B, after
the method of FIG. 6 has been performed on the page of FI1G.
8A; and

FIG. 9 shows the result of the example in FIG. 8A, after the
method of FIG. 5 has been performed on the page of FIG. 8A.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

Where reference is made in any one or more of the accom-
panying drawings to steps and/or features, which have the
same reference numerals, those steps and/or features have for
the purposes of this description the same function(s) or opera-
tion(s), unless the contrary intention appears.

A method 200 (see FIG. 2) of rendering a graphical object
on a page, is described below with reference to FIGS. 1A t0 9.
The method 200 takes into account a compatible/incompat-

US 9,104,352 B2

5

ible property of the graphical object as well as other proper-
ties of the graphical object, such as object type and size as
well as overlap.

FIGS. 1A and 1B depict a general-purpose computer sys-
tem 100, upon which the described methods, including the
method 300, may be practiced.

As seen in FIG. 1A, the computer system 100 includes: a
computer module 101; input devices such as a keyboard 102,
a mouse pointer device 103, a scanner 126, a camera 127, and
amicrophone 180; and output devices including a printer 115,
a display device 114 and loudspeakers 117. An external
Modulator-Demodulator (Modem) transceiver device 116
may be used by the computer module 101 for communicating
to and from a communications network 120 via a connection
121. The communications network 120 may be a wide-area
network (WAN), such as the Internet, a cellular telecommu-
nications network, or a private WAN. Where the connection
121 is a telephone line, the modem 116 may be a traditional
“dial-up” modem. Alternatively, where the connection 121 is
a high capacity (e.g., cable) connection, the modem 116 may
be a broadband modem. A wireless modem may also be used
for wireless connection to the communications network 120.

The computer module 101 typically includes at least one
processor unit 105, and a memory unit 106. For example, the
memory unit 106 may have semiconductor random access
memory (RAM) and semiconductor read only memory
(ROM). The computer module 101 also includes a number of
input/output (I/O) interfaces including: an audio-video inter-
face 107 that couples to the video display 114, loudspeakers
117 and microphone 180; an I/O interface 113 that couples to
the keyboard 102, mouse 103, scanner 126, camera 127 and
optionally a joystick or other human interface device (not
illustrated); and an interface 108 for the external modem 116
and printer 115. In some implementations, the modem 116
may be incorporated within the computer module 101, for
example within the interface 108. The computer module 101
also has a local network interface 111, which permits cou-
pling of the computer system 100 via a connection 123 to a
local-area communications network 122, known as a Local
Area Network (LAN). As illustrated in FIG. 1A, the local
communications network 122 may also couple to the wide
network 120 via a connection 124, which would typically
include a so-called “firewall” device or device of similar
functionality. The local network interface 111 may comprise
an Ethernet™ circuit card, a Bluetooth™ wireless arrange-
ment or an IEEE 802.11 wireless arrangement; however,
numerous other types of interfaces may be practiced for the
interface 111.

The I/O interfaces 108 and 113 may afford either or both of
serial and parallel connectivity, the former typically being
implemented according to the Universal Serial Bus (USB)
standards and having corresponding USB connectors (not
illustrated). Storage devices 109 are provided and typically
include a hard disk drive (HDD) 110. Other storage devices
such as a floppy disk drive and a magnetic tape drive (not
illustrated) may also be used. An optical disk drive 112 is
typically provided to act as a non-volatile source of data.
Portable memory devices, such optical disks (e.g., CD-ROM,
DVD, Blu-ray Disc™), USB-RAM, portable, external hard
drives, and floppy disks, for example, may be used as appro-
priate sources of data to the system 100.

The components 105 to 113 of the computer module 101
typically communicate via an interconnected bus 104 and in
a manner that results in a conventional mode of operation of
the computer system 100 known to those in the relevant art.
For example, the processor 105 is coupled to the system bus
104 using a connection 118. Likewise, the memory 106 and

20

40

45

6

optical disk drive 112 are coupled to the system bus 104 by
connections 119. Examples of computers on which the
described arrangements can be practised include IBM-PC’s
and compatibles, Sun Sparcstations, Apple Mac™ or a like
computer systems.

The described methods, including the method 200, may be
implemented using the computer system 100 wherein the
processes of FIGS. 1 to 9, to be described, may be imple-
mented as one or more software application programs 133
executable within the computer system 100. In particular, the
steps of the described method 200 are effected by instructions
131 (see FIG. 1B) in the software application program 133
that are carried out within the computer system 100. The
software instructions 131 may be formed as one or more
software code modules, each for performing one or more
particular tasks. The software application program 133 may
also be divided into two separate parts, in which a first part
and the corresponding software code modules performs the
described methods and a second part and the corresponding
software code modules manage a user interface between the
first part and the user.

The software application program 133 may be stored in a
computer readable medium, including the storage devices
described below, for example. The software application pro-
gram 133 is loaded into the computer system 100 from the
computer readable medium, and is then executed by the com-
puter system 100. A computer readable medium having such
software or computer program recorded on the computer
readable medium is a computer program product. The use of
the computer program product in the computer system 100
preferably effects an advantageous apparatus for implement-
ing the described methods.

The software application program 133 is typically stored in
the HDD 110 or the memory 106. The software application
program 133 is loaded into the computer system 100 from a
computer readable medium, and executed by the computer
system 100. Thus, for example, the software application pro-
gram 133 may be stored on an optically readable disk storage
medium (e.g., CD-ROM) 125 that is read by the optical disk
drive 112.

In some instances, the software application program 133
may be supplied to the user encoded on one or more CD-
ROMs 125 and read via the corresponding drive 112, or
alternatively may be read by the user from the networks 120
or122. Still further, the software application program 133 can
also be loaded into the computer system 100 from other
computer readable media. Computer readable storage media
refers to any non-transitory tangible storage medium that
provides recorded instructions and/or data to the computer
system 100 for execution and/or processing. Examples of
such storage media include floppy disks, magnetic tape, CD-
ROM, DVD, Blu-ray Disc, a hard disk drive, a ROM or
integrated circuit, USB memory, a magneto-optical disk, or a
computer readable card such as a PCMCIA card and the like,
whether or not such devices are internal or external of the
computer module 101. Examples of transitory or non-tan-
gible computer readable transmission media that may also
participate in the provision of software, application pro-
grams, instructions and/or data to the computer module 101
include radio or infra-red transmission channels as well as a
network connection to another computer or networked
device, and the Internet or Intranets including e-mail trans-
missions and information recorded on Websites and the like.

The second part of the software application program 133
and the corresponding software code modules mentioned
above may be executed to implement one or more graphical
user interfaces (GUIs) to be rendered or otherwise repre-

US 9,104,352 B2

7

sented upon the display 114. Through manipulation of typi-
cally the keyboard 102 and the mouse 103, a user of the
computer system 100 and the application may manipulate the
interface in a functionally adaptable manner to provide con-
trolling commands and/or input to the applications associated
with the GUI(s). Other forms of functionally adaptable user
interfaces may also be implemented, such as an audio inter-
face utilizing speech prompts output via the loudspeakers 117
and user voice commands input via the microphone 180.

FIG. 1B is a detailed schematic block diagram of the pro-
cessor 105 and a “memory” 134. The memory 134 represents
a logical aggregation of all the memory modules (including
the HDD 109 and semiconductor memory 106) that can be
accessed by the computer module 101 in FIG. 1A.

When the computer module 101 is initially powered up, a
power-on self-test (POST) program 150 executes. The POST
program 150 is typically stored in a ROM 149 of the semi-
conductor memory 106 of FIG. 1A. A hardware device such
as the ROM 149 storing software is sometimes referred to as
firmware. The POST program 150 examines hardware within
the computer module 101 to ensure proper functioning and
typically checks the processor 105, the memory 134 (109,
106), and a basic input-output systems software (BIOS) mod-
ule 151, also typically stored in the ROM 149, for correct
operation. Once the POST program 150 has run successfully,
the BIOS 151 activates the hard disk drive 110 of FIG. 1A.
Activation of the hard disk drive 110 causes a bootstrap loader
program 152 that is resident on the hard disk drive 110 to
execute via the processor 105. This loads an operating system
153 into the RAM memory 106, upon which the operating
system 153 commences operation. The operating system 153
is a system level application, executable by the processor 105,
to fulfil various high level functions, including processor
management, memory management, device management,
storage management, software application interface, and
generic user interface.

The operating system 153 manages the memory 134 (109,
106) to ensure that each process or application running on the
computer module 101 has sufficient memory in which to
execute without colliding with memory allocated to another
process. Furthermore, the different types of memory avail-
able in the system 100 of FIG. 1A must be used properly so
that each process can run effectively. Accordingly, the aggre-
gated memory 134 is not intended to illustrate how particular
segments of memory are allocated (unless otherwise stated),
but rather to provide a general view of the memory accessible
by the computer system 1100 and how such is used.

As shown in FIG. 1B, the processor 105 includes a number
of functional modules including a control unit 139, an arith-
metic logic unit (ALU) 140, and a local or internal memory
148, sometimes called a cache memory. The cache memory
148 typically includes a number of storage registers 144-146
in a register section. One or more internal busses 141 func-
tionally interconnect these functional modules. The proces-
sor 105 typically also has one or more interfaces 142 for
communicating with external devices via the system bus 104,
using a connection 118. The memory 134 is coupled to the bus
104 using a connection 119.

The software application program 133 includes a sequence
of instructions 131 that may include conditional branch and
loop instructions. The software application program 133 may
also include data 132 which is used in execution of the pro-
gram 133. The instructions 131 and the data 132 are stored in
memory locations 128, 129, 130 and 135, 136, 137, respec-
tively. Depending upon the relative size of the instructions
131 and the memory locations 128-130, a particular instruc-
tion may be stored in a single memory location as depicted by

5

10

15

20

25

30

40

45

50

55

60

65

8

the instruction shown in the memory location 130. Alter-
nately, an instruction may be segmented into a number of
parts each of which is stored in a separate memory location, as
depicted by the instruction segments shown in the memory
locations 128 and 129.

In general, the processor 105 is given a set of instructions
which are executed therein. The processor 105 waits for a
subsequent input, to which the processor 105 reacts to by
executing another set of instructions. Each input may be
provided from one or more of a number of sources, including
data generated by one or more of the input devices 102, 103,
data received from an external source across one of the net-
works 120,102, data retrieved from one of the storage devices
106, 109 or data retrieved from a storage medium 125 inserted
into the corresponding reader 112, all depicted in FIG. 1A.
The execution of a set of the instructions may in some cases
result in output of data. Execution may also involve storing
data or variables to the memory 134.

The described methods use input variables 154, which are
stored in the memory 134 in corresponding memory locations
155, 156, 157. The methods produce output variables 161,
which are stored in the memory 134 in corresponding
memory locations 162, 163, 164. Intermediate variables 158
may be stored in memory locations 159, 160, 166 and 167.

Referring to the processor 105 of FIG. 1B, the registers
144, 145, 146, the arithmetic logic unit (ALU) 140, and the
control unit 139 work together to perform sequences of
micro-operations needed to perform “fetch, decode, and
execute” cycles for every instruction in the instruction set
making up the program 133. Each fetch, decode, and execute
cycle comprises:

(a) a fetch operation, which fetches or reads an instruction

131 from a memory location 128, 129, 130;

(b) a decode operation in which the control unit 139 deter-

mines which instruction has been fetched; and

(c) an execute operation in which the control unit 139

and/or the ALU 140 execute the instruction.

Thereafter, a further fetch, decode, and execute cycle for
the next instruction may be executed. Similarly, a store cycle
may be performed by which the control unit 139 stores or
writes a value to a memory location 132.

Each step or sub-process in the processes of FIGS. 1t0 9 is
associated with one or more segments of the software appli-
cation program 133 and is performed by the register section
144, 145, 147, the ALU 140, and the control unit 139 in the
processor 105 working together to perform the fetch, decode,
and execute cycles for every instruction in the instruction set
for the noted segments of the software application program
133.

The method 300 may alternatively be implemented in dedi-
cated hardware such as one or more integrated circuits per-
forming the functions or sub functions of the method 300.
Such dedicated hardware may include graphic processors,
digital signal processors, or one or more microprocessors and
associated memories.

The method 200 of rendering a graphical object on a page
will now be described with reference to FIG. 2. The method
200 may be implemented as one or more software code mod-
ules of the software application program 133 resident on the
hard disk drive 110 and being controlled in its execution by
the processor 105.

The method 200 begins at drawing command receiving
step 201, where the processor 105 receives one or more draw-
ing commands which may be stored in memory 106. The
drawing commands may be issued by another software appli-
cation program resident on the hard disk drive 110 and being
controlled by the processor 105. Alternatively, the drawing

US 9,104,352 B2

9

commands may be issued by a software application program
resident on a remote server connected to the network 120.

In one implementation, the drawing commands may be
issued to an operating system spooler software module, using
an operating system supplied graphics application program-
ming interface. Such an operating system spooler software
module may be resident on the hard disk drive 110 and be
controlled in its execution by the processor 105. At converting
step 203, the processor 105 (or the operating system spooler
software module under execution of the processor 105) con-
verts the drawing commands to a standardized file format
such as the XPS file format or the Portable Document Format
(PDF).

Then, at interpreting step 205, the standardized file format
is interpreted into an intermediate graphical object. The inter-
mediate graphical object contains corresponding drawing
instructions of how to draw the graphical object onto the page,
including graphics properties of the graphical object, such as
shape, compositing method, clipping information and possi-
bly a bounding box. In one implementation, step 205 may be
executed by a printer driver software module resident on the
hard disk drive 110 and being controlled in its execution by
the processor 105.

At storing step 207, the intermediate graphical object and
corresponding drawing instructions are stored in a self-re-
tained display list (SRDL) configured within the memory
106. The self-retained display list is an internal display list
that is constructed and used for converting the intermediate
graphical object into printer-recognizable format. In one
implementation, step 207 and following steps 209 to 213 may
be executed by an object converter software module resident
in the hard disk drive 110 and being controlled in its execution
by the processor 105. As described below, in steps 207 to 213
the intermediate graphical objects are converted into printer-
compatible graphical objects in printer-recognizable format.

Then at mapping step 209, the processor 105 performs the
step of mapping the intermediate graphical object onto one or
more corresponding regions of the page. In performing the
mapping at step 209, the processor 105 determines which
regions of the page are touched by the graphical object. A
method 400 of mapping the intermediate graphical object
onto one or more corresponding regions of the page, as
executed at step 209, will be described in detail below with
reference to FIG. 4.

At marking step 211, the processor 105 performs the step
of marking the corresponding regions of the page as output
incompatible based on the mapped graphical object being
output incompatible, and any surrounding regions being clas-
sified as output incompatible (i.e., associated with a corre-
sponding output incompatible graphical object). In one
implementation, the corresponding regions of the page are
marked as output incompatible based on a determined size of
the graphical object satistying a threshold as described below.

Each region of the page has a bounding box and an asso-
ciated “dirty status” flag. The dirty status flag is used for
marking the corresponding region so as to indicate if the
graphical object corresponding to the region is output incom-
patible (i.e., dirty) and needs to be converted to output com-
patible in following step 213. A method 300 of marking one or
more regions of the page as output incompatible, as executed
at step 211, will be described below with reference to FIG. 3.

Then at deciding step 212, if the processor 105 determines
that there is a further intermediate graphical object to be
processed (e.g., the printer driver software module has inter-
preted a further intermediate graphical object in the standard-
ized file format), then the method 200 returns to step 209 to
process the further intermediate graphical object. Otherwise,

10

15

20

25

30

35

40

45

50

55

60

65

10
the method 200 proceeds to converting step 213. The further
intermediate graphical object is stored in the self-retained
display list (SRDL) configured within the memory 106.

At converting step 213, the processor 105 performs the step
of converting the regions marked as output incompatible (i.e.,
as dirty) to output compatible regions. As described in detail
below, at step 213, the processor 105 processes the dirty status
flags of the regions and converts the dirty regions into printer-
compatible graphical objects. A method 500 of converting
regions marked as output incompatible to output compatible
regions, as executed at step 213, will be described in detail
below with reference to FIG. 5.

At rendering step 215, the processor 105 performs the step
of rendering the graphical object on the page using any cor-
responding output compatible regions. In one implementa-
tion, the processor 105 may pass the printer-compatible
graphical object, together with corresponding drawing
instructions, to a rendering engine software module residing
on the printer 115. Such a rendering engine renders the
printer-recognizable graphical object into pixels, and prints
the pixels onto the page.

The method 400 of mapping the intermediate graphical
object onto one or more corresponding regions of the page, as
executed at step 209, will now be described with reference to
FIG. 4. In the method 400, an intermediate graphical object is
mapped onto corresponding regions of the page. Each region
has a bounding box and an associated dirty status flag as
described above. The method 400 may be implemented as one
or more software code modules of the software application
program 133 resident on the hard disk drive 110 and being
controlled in its execution by the processor 105. As described
above, in one implementation, the method 400 may be
executed by the object converter software module.

At step 410, the processor 105 receives a bounding box of
the intermediate graphical object, if the bounding box is
provided in graphics properties associated with the interme-
diate graphical object. If the bounding box is not provided
with the graphical object, then the processor 105 determines
a bounding box using shape and clipping information pro-
vided with graphics properties of the graphical object.

At step 420, the processor 105 uses the bounding box ofthe
graphical object to determine which regions of the page are
touched by the graphical object. In particular, the processor
105 determines intersections between the bounding box of
the graphical object and bounding boxes of each of the
regions. If intersections are determined, then the region is
determined to be touched by the graphical object.

At step 430, the processor 105 stores details of the deter-
mined touched regions within the memory 106.

The method 300 of marking one or more regions of the
page as output incompatible, as executed at step 211 of the
method 200, will now be described below with reference to
FIG. 3. In the method 300, the intermediate graphical objects
parsed from standardised format and stored in the self-re-
tained display list are converted to printer-compatible graphi-
cal objects. The page is divided into grids of a pre-determined
size. Fach grid is a region as described above.

The method 300 may be implemented as one or more
software modules of the software application program 133
and being controlled in its execution by the processor 105.

The method 300 begins at dirty region determining step
330, where if the processor 105 determines that all the regions
of the page that are touched by the intermediate graphical
object have an associated “dirty” status flag, then the method
300 concludes. Otherwise, the method 300 proceeds to step
340.

US 9,104,352 B2

11

A region that is marked as “dirty” means that the graphical
object corresponding to the region is output incompatible
(i.e., the graphical object is not in a format recognizable to the
printer 115) and needs to be converted into a printer-compat-
ible graphical object. If all the touched regions already have
the dirty flag on, then the method 300 skips further processing
of the intermediate graphical object.

At printer-compatible determining step 340, the processor
105 checks all graphics properties of the received intermedi-
ate graphical object, including corresponding drawing
instructions used to draw the graphical object onto the page,
the compositing method and the clipping information. If the
processor 105 determines at step 340 that there are any graph-
ics properties of the graphical object that are not compatible
with the printer-recognizable format used by the printer 115
(i.e., the graphical object is not printer compatible), then the
current graphical object is considered as a printer-incompat-
ible object and the method 300 proceeds to marking step 360.
Otherwise, the method 300 proceeds to step 350.

At marking step 360, the processor 105 performs the step
of marking the touched regions by setting the dirty flag asso-
ciated with each of the touched regions to be TRUE; and the
processor 105 skips further processing of the current inter-
mediate graphical object.

If all graphics properties of the current intermediate
graphical object are printer-compatible at step 340, then the
current graphical object is classified as a printer-compatible
object and the method 300 proceeds to image determining
step 350.

At image determining step 350, if the processor 105 deter-
mines that the current intermediate graphical object is a larger
than a pre-determined threshold, opaque image, that is not
going to be scaled up too much on the page to be printed, then
the method 300 proceeds to step 360. Otherwise, the method
300 proceeds to storing step 370.

A maximum threshold of scaling factor of the images,
big_image_max_scaled_factor, and a minimum threshold of
the image size, big_image_min_image_size, may be config-
ured within the memory 106. Accordingly, if the current
graphical object is an opaque image that is larger than the
big_image_min_image_size threshold and has a scaling fac-
tor less than the big_image max_scaled_factor threshold,
then all regions touched by the current graphical object are
marked as dirty at step 360.

At storing step 370, the intermediate graphical object is
stored within the memory 106 for printing by the rendering
engine, for example, in a printer-recognizable format.

At step 375, the processor 105 determines if there are any
regions of the page that are fully covered by the current
printer-compatible graphical object. Depending on the graph-
ics properties of the graphical object, including the clipping
information, if a region is fully covered by the graphical
object then all previous contents in the region will not be
shown on the printed page. The processor 105 marks such a
region as output compatible at step 375 by setting the dirty
status flag of such a region to FALSE. The method 300 con-
cludes following step 375.

The method 500 of converting regions, marked as output
incompatible, to output compatible regions, will be described
in detail below with reference to FIG. 5. The method 500
processes the dirty status of all regions of the page, and
converts the dirty regions into printer-compatible graphical
objects.

The method 500 may be implemented as one or more
software code modules of the software application program
133 resident on the hard disk drive 110 and being controlled
in its execution by the processor 105. As described above, in

10

15

20

25

30

35

40

45

50

55

60

65

12

one implementation, the method 500 may be executed by the
object converter software module.

The method 500 begins at bounding box determining step
501, where the processor 105 performs the step of determin-
ing bounding boxes each comprising a plurality of regions
marked as output incompatible (i.e., the dirty regions). In
particular, the processor 105 processes the dirty regions,
marked in accordance with the method 300, and merges the
dirty regions into groups of “region_sets”. The groups of
region_sets are stored within the memory 106.

A method 600 of merging regions into groups of region_
sets, as executed at step 501, will be described below with
reference to FIG. 6. In the method 600, the processor 105
scans regions horizontally, starting at a first row of dirty tiles.
In particular, starting at a left-most dirty tile of the first row,
the processor 105 attempts to merge an adjacent tile to the
right of the left-most dirty tile. Merging of the tiles succeeds
if the adjacent tile on the right is dirty. However, if the adja-
cent tile is not dirty, then the merging of the tiles may fail,
depending on an area threshold as described below. The
method 600 determines a set of one or more dirty tile regions
for the first row. After completing processing of the first row
of dirty tiles, the processor 105 horizontally scans and merges
a second row of dirty tiles in a similar manner.

After completing processing of the second row of dirty
tiles, the processor 105 attempts to merge the set of dirty tiles
from the first and second rows, again applying an area thresh-
old to determine whether or not to carry out the merge. The
result of merging the set of dirty tiles from the first and second
rows is a set of one or more dirty tile regions. Processing then
continues in a similar manner for each subsequent row of
dirty tiles. At completion of processing of each row, a set of
dirty tile regions (i.e., a region_set) in the processed row is
merged with a previous combined set of dirty tile regions.

In one implementation, the processor 105 attempts to
merge the set of dirty tiles from the first and the second rows,
by determining a distance between the first and the second
rows. I[f the distance satisfies a predetermined distance thresh-
old, the result of merging the set of dirty tiles is a set of one or
more dirty tile regions. Processing then continues in a similar
manner for each subsequent row of dirty tiles. At completion
of processing of each row, a set of dirty tile regions (i.e., a
region_set) in the processed row is merged with a previously
combined set of dirty tile regions.

Each region_set contains a group of regions of the page that
forms a rectangle shape, and a bounding box of a region_set
is determined by co-ordinates, (start_x, start_y), of a top left
region of the page, and co-ordinates, (end_x, end_y), of a
bottom right region of the page. Each region_set also contains
information of how many regions of the page in total the
region_set contains (i.e., “num_total_regions™) and out of
which how many regions are dirty regions (i.e., “num_dirty_
regions”). Accordingly, at step 501, the processor 105 also
performs the step of determining a proportion of the number
of output incompatible regions to total number of regions in
the bounding box for a corresponding region_set.

At accessing step 510, the processor 105 accesses aregion_
set from the memory 106. Then at rendering step 520, the
processor 105 renders an image representing an area indi-
cated by the accessed region_set, using information stored in
the self-retained display list configured within the memory
106. As described above, the self-retained display list con-
tains the intermediate graphical objects and corresponding
drawing instructions. The rendered image of the region_set
may be stored within the memory 106 and contains all graphi-
cal objects in the corresponding area.

US 9,104,352 B2

13

At converting step 530, the processor 105 converts the
rendered image into the printer-recognizable format corre-
sponding to the printer 115. In one implementation, the
printer-recognizable formatted image is output to the render-
ing engine software module as described above. Then at
decision step 535, if the processor 105 determines that there
are more region_sets within memory 106 for processing, then
the method 500 proceeds to step 510 to get a next region_set.
Otherwise, the method 500 concludes.

The method 600 of merging regions into groups of region_
sets, as executed at step 501, will be described below with
reference to FIG. 6. The method 600 may be implemented as
one or more software code modules of the software applica-
tion program 133 resident on the hard disk drive 110 and
being controlled in its execution by the processor 105. As
described above, in one implementation, the method 600 may
be executed by the object converter software module.

As described in detail below, in the method 600, the pro-
cessor 105 marks at least one output compatible region in the
particular bounding box for a region_set as output incompat-
ible in order to increase the proportion of the number of the
output incompatible regions to a total number of regions
above a threshold (i.e, a predefined merge_threshold). Once
the proportion of the number of regions marked as output
incompatible reaches a threshold, the region in the bounding
box is merged by processor 105.

In another implementation, if a region_set is within a pre-
defined distance from another region_set, then both the
region_sets are merged.

In the method 600, all dirty regions (ie., regions associated
with a printer incompatible graphical object) marked in
accordance with the method 300 are merged into a group of
region_sets.

The method 600 begins at processing step 601, where the
processor 105 processes each row of the regions to form a
group of region_sets. A method 700 of processing each row of
regions, as executed at step 601, will be described below with
reference to FIG. 7. In the following steps 610 to 690, the dirty
regions in each row are merged into a group of region_sets,
where each region_set is also a shape of rectangle area. Each
region_set also contains a group of regions including dirty
and clean regions.

At first row accessing step 610, the processor 105 accesses
a first row of the region_sets stored in memory 106. Then at
decision step 615, if the processor 105 determines that there
are no more rows of the region_sets to be processed, then the
method 600 concludes. Otherwise, the method 600 proceeds
to next row accessing step 620.

At further row accessing step 620, the processor 105
accesses a second row of the region_sets. At scanning step
630, after accessing a first_row and a second_row of the
region_sets, the processor 105 scans from left to right, finding
a candidate region_set from each row to form the first two
candidate region_sets. As each region_set has a bounding box
represented by the (start_x, start_y) co-ordinate and the
(end_x, end_y) co-ordinate, the candidate region_set is deter-
mined based on the start_x co-ordinate of the region_set. The
candidate region_set with the smallest start_x co-ordinate is
selected for each row.

At merging step 640, the processor 105 merges the two
candidate region_sets from the first_row and second_row to
form a merged region_set by executing the comparison step
650. If the two region_sets are merged, the merged region_set
is a new rectangle shape of regions. The new rectangle shape
of regions has a bounding box determined by the (min_x,
min_y) and (max_x, max_y) co-ordinates, where the min_x
and min_y represents minimum X and minimum Y values,

20

35

40

45

55

14

respectively, from the bounding boxes of the two candidate
region_sets, and max_x and max_y represents maximum X
and minimum Y values from the bounding boxes of the two
candidate region_sets.

The merged region_set formed at step 640 contains all
regions contained in the two candidate region_sets, as well as
all the clean regions in between the two candidate region_sets
to form a new rectangle shape of regions. The num_total_re-
gions and num_dirty_regions, configured within the memory
106, for the new rectangle shape are also updated.

As part of the merging step 640, in comparing step 650, if
the processor 105 determines that the ratio of the “dirty
region” (region marked as output incompatible) to the total
number of regions is greater than or equal to a predefined
threshold that initiates merging merge_threshold, then the
method 600 proceeds to step 670. Otherwise, the attempted
merging is deemed to have failed and the method 600 pro-
ceeds to step 660.

At merging step 670, the merged region_set is stored
within the memory 106 as one of two next candidate region_
sets. At step 660, the candidate region_set with the larger
start_x co-ordinate is stored in memory 106 as one of two next
candidate region_sets.

At determining step 680, if the processor 105 finds the
other next candidate region_set based on the start_x co-ordi-
nate from the first_row and second_row of the region_sets
stored in the memory 106, then the method 600 returns to step
640 to repeat the attempted merging steps, until all region_
sets from both the first_row and the second row are processed.
Otherwise, the method 600 proceeds to step 690. Again the
region_set with the smallest start_x co-ordinate is selected at
step 680.

At step 690, the processor 105 finishes processing all
region_sets from the first_row and the second_row ofregion_
sets. The result merged region_sets are stored within the
memory 106 as a new row of region_sets, which will be the
first_row of the next round of processing. Then the method
600 repeats the steps from step 620, where a second_row of
region_sets is selected and merged with the first_row of
region_sets.

The method 700 of processing each row of regions, as
executed at step 601, will now be described with reference to
FIG. 7. The method 700 may be implemented as one or more
software code modules of the software application program
133 resident on the hard disk drive 110 and being controlled
in its execution by the processor 105. As described above, in
one implementation, the method 700 may be executed by the
object converter software module.

The method 700 processes each row of regions of the page
stored in the memory and merges the dirty regions in each row
(i.e., as marked in accordance with the method 300) into a
group of region_sets.

The method 700 begins at determining step 710, where a
new row of unprocessed regions stored in the memory 106 is
selected by the processor 105 as a current row. Otherwise, if
the processor 105 determines at step 710 that all rows of the
regions stored in the memory 106 are processed, then the
method 700 concludes.

At scanning step 720, the processor 105 scans the regions
selected at step 710 for the current row from left to right. The
processor 105 selects a first dirty region and all adjacent dirty
regions following the first dirty region, and merges the first
dirty region and all adjacent dirty regions into a merged
region_set. The bounding box of the merged region_set is
determined based on the (start_x, start_y) co-ordinate of the
first dirty region and the (end_x, end_y) co-ordinate of the last
adjacent dirty region. Both num_total_regions and num_

US 9,104,352 B2

15

dirty_regions are equal to the total number of the adjacent
dirty regions merged together at step 720. The merged
region_ set is stored in memory 106 as the first_candidate
region_set.

At decision step 730, if the processor 105 determines that
all groups of adjacent dirty regions have been processed for
the current row, then the method 700 proceeds to step 735.
Otherwise, the method 700 returns to step 710.

At merging step 735, the processor 105 merges a next
group of adjacent dirty regions into a new region_set. The
new region_set is stored in the memory 106 as the second_
candidate region_set. Then at step 740, the processor 105 tries
to merge the first_candidate and second_candidate region_
sets and all the clean regions in between the first_candidate
and second_candidate region_sets. By merging the first_can-
didate and second_candidate region_sets, the merged region_
set is a new rectangle shape of regions whose bounding box is
determined by the (min_x, min_y), (max_x, max_y) co-ordi-
nates, where the min_x and min_y are the minimum X and Y
value from the bounding boxes of the two candidate region_
sets, and max_x and max_y are the maximum X and Y value
from the bounding boxes of the two candidate region_ sets.

The merged region_set formed at step 740 contains all
regions that were contained in the first and second candidate
region_sets, as well as all the clean regions in between the first
and second candidate region_sets to form a new rectangle
shape of regions. The num_dirty_regions of the merged
region_set equals the num_dirty_regions of the first_candi-
date region_set plus the num_dirty_regions of the second_
candidate region_set. The num_total_regions of the merged
region_set equals the num_total_regions of the first_candi-
dateregion set plus the num_total_regions of the second_can-
didate region_set plus the number of the clean regions in
between the first_candidate region_set and the second_can-
didate region_set.

At decision step 750, if the processor 105 determines that
the ratio of number of “dirty region” (region marked as output
incompatible) to the total number of regions in the merged
region_set is greater than or equal to a predefined threshold
that initiates merging merge_threshold then the method 700
proceeds to step 760. Otherwise, the method 700 proceeds to
step 770.

In one implementation, at decision step 750, if the proces-
sor 105 determines that the distance between the clean region
and a region marked as dirty (containing output incompatible
graphical objects) satisfies a predefined threshold (e.g., fifty
(50) pixels), the clean region is marked as dirty as well. The
marking of the clean region as a dirty region initiates the
merging process in merging step 760. Otherwise, the method
700 proceeds to step 770.

At step 760, the merged region_set is stored in the memory
106 as a new region_set in the current row as the first_candi-
date region_set. Otherwise, the second_candidate region_set
is stored in the memory 106 as the first_candidate region_set
of a next round at storing step 770.

Following steps 760 and 770, the method 700 returns to
step 730 and processing steps are repeated from step 735,
until there are no more dirty regions to be found in the current
row. The nextrow of regions are then processed from step 710
as described above. When all rows of regions are processed,
the method 700 concludes as described above.

The methods described above will now be described fur-
ther by way of example with reference to FIGS. 8A t0 9. In
accordance with the example, intermediate graphical objects
801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812,
813 of the page 800 are converted to printer-compatible
graphical objects in accordance with the described methods.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

In the example of FIGS. 8A t0 9, the objects 801, 802, 803,
804, 805, 806, 807, 808, 809, 810, 811, 812, 813 are the
graphical objects in the intermediate format sent from the
printer driver software module and stored in the self-retained
display list as described above. The objects 801, 802, 803,
804, 805, 806, 807, 808, 809, 810, 811, 812, 813 are drawn on
the page 800 in the same order as the objects 801, 802, 803,
804, 805, 806, 807, 808, 809, 810, 811, 812, 813 are num-
bered. For example, an object with a smaller number (e.g., the
object 801) is rendered on the page 800 below an object with
a higher number (e.g., the object 802). The objects (e.g., 801,
802) are rendered using a suitable compositing algorithm and
the smaller numbered object (e.g., 801) as compositing back-
ground. In the example of FIGS. 8A t0 9:

objects 801, 804, 805, 807, 811, 812, which are shaded in

FIG. 8A, are printer-incompatible graphical objects;

All other graphical objects of the page 800 (i.e. object 802,

803, 806, 808, 809, and 813) are printer-compatible
graphical objects which are also fully opaque;

object 809 is a non-scaled image object that is larger than

the predefined big_image_max_scaled_size with zero
(0) scaling factor, which is less than the pre-defined
big_image_max_scaled_factor; and

all objects other than object 809 are not image objects.

In accordance with the described methods, the printer-
compatible graphical objects are not necessarily fully
opaque. However, the objects (i.e., object 8§02, 803, 806, 808,
809, and 813) in the example of FIG. 8A are set as fully
opaque for ease of explanation.

The page 800 has been assigned numbers and letters in both
the X and Y co-ordinate direction for the purpose of naming
the grided regions as presented in FIG. 8A. Starting from the
left top corner of the page 800, the names of the regions are:
r(1A), r(1B) . . . rf(IN), r(2A), r(2B), . . . r(21N). An example
of a region_set combined by regions r(1A), r(1B), r(2A),
r(2B) is referred to as “rs(1A, 2B)”, with (num_total_re-
gions==4 & num_dirty_regions==0).

The pre-defined merge_threshold in the example of FIGS.
8A 109 is set to 80%. Regions of the page 800 touched by each
graphical object, as determined at step 209 of the method 200
(i.e., in accordance with the method 400), are as follows:

Object 801: r(3B), r(3C), r(3D), r(3E), r(3F);

Object 802: r(2C), r(2D), r(2E), r(3C), r(3D), r(3E), r(4C),
r(4D), r(4E);

Object 803: r(2K), r(2L), r(2M), r(3]), r(3K), r(3L), r(3M),
1(4]), r(4K), r(4L), r(4M), r(5K), r(5L), r(SM);

Object 804: r(3K), r(4]), r(4K), r(4L);

Object 805: r(3L), r(3M), r(3N), r(4M);

Object 806: r(6E), r(6F), r(7E), r(7F), r(8E), r(8F);

Object 807: r(7F), r(7G), r(7H), r(8E), r(8F), r(8G), r(8H),
r(80), r(9F), r(9G), r(9H);

Object 808: r(8G), r(8H), r(81), r(9G), r(9H), r(9]), r(10G),
r(10H), r(10D), r(11G), r(11H), r(111);

Object 809: r(13B) to r(13M), r(14B) to r(14M), r(15B) to
r(15M), r(16B) to r(16M), r(17B) to r(17M), r(18B) to
r(18M), r(19B) to r(19M), r(20B) to r(20M), r(21B) to
r(21M);

Object 810: r(16F) to r(16]), r(17F) to r(17J), r(18F) to
r(187);

Object 811: r(15E), r(16D), r(16E), r(17D), r(17E), r(17F);

Object 812: r(161) to r(16L), r(171) to r(17L);

Object 813: r(17H), r(171), r(18H), r(181);

At the beginning of the method 200, the dirty status flag of
each of the regions of the page 800 are set to FALSE. When
the object 801 is received by the processor 105 at step 207 of

US 9,104,352 B2

17
the method 200, the touched regions determined at step 209
are r(3B), r(3C), r(3D), r(3E) and r(3F). Since object 801 is a
printer-incompatible object, at step 211 of the method 200
(i.e., at step 360 of the method 300), the dirty flags of regions
r(3B), r(3C), r(3D), r(3E) and r(3F) are set to be TRUE.

Then at step 212 of the method 200, the method 200 returns
to step 209 to get the next intermediate graphical object from
the self-retained display list (i.e., as sent from the printer
driver software module).

When object 802 is received by the processor 105, the
touched regions determined at step 209 include region r(3D),
which was set to be dirty in the processing of object 801. At
step 350 of the method 300, since object 802 is not an image
object, the method 300 proceeds to step 370 where the pro-
cessor 105 stores the object 802 in printer-recognizable for-
mat in the memory 106 for printing by the rendering engine
software module, for example. At step 375 of the method 300,
since object 802 is a fully opaque printer-compatible object,
and region r(3D) is fully covered by object 802, the processor
105 sets the dirty flag of region r(3D) back to be FALSE. Then
the method 200 returns to step 209 to get the next intermediate
graphical object from the self-retained display list (i.e., as
sent from the printer driver software module).

When the object 803 is received by the processor 105, since
the object 803 is a non-image printer-compatible object, the
processor 105 stores the object 803 in printer-recognizable
format in the memory 106 (as at step 370) for printing by the
rendering engine software module. The method 200 then
returns to step 209 to get a next intermediate graphical object
from the self-retained display list (i.e., as sent from the printer
driver).

When the object 804 and object 805 are received by the
processor 105 at step 207 of the method 200, the touched
regions determined at step 209 are r(3K), r(4J), r(4K), r(4L),
r(3L), r(3M), r(3N) and r(4M). Since object 801 is a printer-
incompatible object, at step 211 of the method 200 (i.e., at
step 360 of the method 300), the dirty flags of the regions
r(3K), r(4]), r(4K), r(4L), r(3L), r(3M), r(3N) and r(4M) are
set to be TRUE. Then at step 212 of the method 200, the
method 200 returns to step 209 to get the next intermediate
graphical object from the self-retained display list configured
within the memory 106.

When object 806 is received by the processor 105 at step
207 of the method 200, since the object 806 is a non-image
printer-compatible object, the processor 105 stores the object
806 at step 370 in printer-recognizable format in the memory
106 for printing by the rendering engine software module, for
example. The dirty flags of the regions that are touched by
object 806 are not changed. The method 200 then returns to
step 209 to get the next intermediate graphical object from the
self-retained display list configured in the memory 106.

When the object 807 is received by the processor 105 at
step 207 of the method 200, the touched regions determined at
step 209 are r(7F), r(7G), r(7H), r(8E), r(8F), r(8G), r(8H),
r(81), r(9F), r(9G) and r(9H). Since object 807 is a printer-
incompatible object, at step 211 of the method 200 (i.e., at
step 360 of the method 300), the dirty flags of the regions
r(7F), r(7G), r(7H), r(8E), r(8F), r(8G), r(8H), r(81), r(9F),
r(9G) and r(9H) are set to be TRUE. Then at step 212 of the
method 200, the method 200 returns to step 209 to get the next
intermediate graphical object from the self-retained display
list configured within the memory 106.

When object 808 is received by the processor 105, the
touched regions determined at step 209 includes region r(9H),
which was set to be dirty in the processing of object 807. At
step 350 of the method 300, since object 802 is not an image
object, the method 300 proceeds to step 370 where the pro-

10

15

20

25

30

35

40

45

50

55

60

65

18

cessor 105 stores the object 808 in printer-recognizable for-
mat in the memory 106 for printing by the rendering engine
software module, for example. At step 375 of the method 300,
since object 808 is a fully opaque printer-compatible object,
and region r(9H) is fully covered by object 802, the processor
105 sets the dirty flag of region r(9H) back to be FALSE. Then
the method 200 returns to step 209 to get the next intermediate
graphical object sent from the self-retained display list (i.e.,
as sent from the printer driver).

When object 809 is received by the processor 105 at step
207 ofthe method 200, the touched regions determined at step
209 arer(13B) to r(13M), r(14B) to r(14M), r(15B) to r(15M),
r(16B) to r(16M), r(17B) to r(17M), r(18B) to r(18M), r(19B)
to r(19M), r(20B) to r(20M), r(21B) to r(21M). Since object
809 is a non-scaled printer-compatible image object that is
larger than a predefined big_image_max_scaled_size with
zero (0) scaling factor, the result of step 350 is TRUE (i.e., the
‘yes’ arrow is followed at step 350). The method 300 then
proceeds to step 360 and sets dirty status flag of the regions
touched by object 809 to be TRUE, without storing the object
809 in memory 106 for subsequent rendering by the rendering
engine software module, even though the object 809 is
printer-compatible. Then at step 212 of the method 200, the
method 200 returns to step 209 to get the next intermediate
graphical object from the self-retained display list configured
within the memory 106.

When objects 810, 811, 812 and 813 are received by the
processor 105 at step 207, since the dirty status flags of the
touched regions that are determined at step 209 are all already
set to TRUE during processing object 809, the results of step
330 of the method 300 are always TRUE for the process of
processing objects 810, 811, 812 and 813. The method 300
skips any further processing and the method 200 returns to
step 209 to get the next intermediate graphical object from the
self-retained display list configured within the memory 106.
Since there are no more objects on the page 800 to be pro-
cessed at step 212, the method 200 proceeds to step 213 where
any regions marked as output incompatible are converted to
output compatible regions. At this stage of the example, the
dirty status of the regions on the page 800 is as shown in FIG.
8B. In accordance with the example of FIGS. 8A to 9, below
is a list of the dirty regions from each row of the page 800:

Row 3: r(3B), r(3C), r(3E), r(3F), r(3K), r(3L), r(3M),
r(3N);

Row 4: r(4]), r(4K), r(4L), r(4M);

Row 7: r(7F), r(7G), r(7TH);

Row 8: r(8E), r(8F), r(8G), r(8H), r(8I);

Row 9: 1r(9F), r(9G);

Row 13: r(13B) to r(13M);

Row 14: r(14B) to r(14M);

Row 15: r(15B) to r(15M);

Row 16: r(16B) to r(16M);

Row 17: r(17B) to r(17M);

Row 18: r(18B) to r(18M);

Row 19: r(19B) to r(19M);

Row 20: r(20B) to r(20M);

Row 21: r(21B) to r(21M);

At step 501 of the method 500, the processor 105 first
executes the method 600 to merge the dirty regions of the
page 800 shown in FIG. 8B to form region_sets.

At step 601 of the method 600, the processor 105 first
executes the method 700 to process each row of the regions of
the page 800.

At step 710, the processor 105 first gets Row 3 of the
regions of the page 800. At step 720, the processor 105 merges
regions r(3B) and r(3C) to region_set rs(3B, 3C) with (num_
total_regions==2; num_dirty_regions==2).

US 9,104,352 B2

19

At step 730, the processor 105 merges regions r(3E) and
r(3F) to region_set rs(3E, 3F) with (num_total_regions—2;
num_dirty_regions==2).

At steps 740 and 750, the processor 105 tries to merge the
region_sets rs(3B, 3C) and rs(3E, 3F) to be rs(3B, 3F) with
(num_total_regions==5; num_dirty_regions==4). Since
(num_dirty_regions/num_total_regions)==0.8>=merge_th-
reshold (80%), the processor 105 goes to step 760 and stores
the rs(3B, 3F) in the memory 106 to be the new region_set for
the current row.

Atstep 730, the processor 105 merges regions r(3K), r(3L),
r(3M) and r(3N) to region_set rs(3K, 3N) with (num_total_
regions==4; num_dirty_regions==4). At step 740 and 750,
the processor 105 tries to merge the region_sets rs(3B, 3F)
and rs(3K, 3N) to be rs(3B, 3N) with (num_total_re-
gions==13; num_dirty_regions==S8). Since (num_dirty_re-
gions/num_total_regions)~=0.61<merge_threshold (80%),
the method 700 proceeds to step 770, does not merge the two
candidate region_sets, and uses the rs(3K, 3N) as the next
candidate region_set.

At step 730, since there are no more dirty regions on the
current row, the method 700 proceeds to step 710 and
accesses Row 4 of theregions. At this stage, the result region_
sets for Row 3 are: rs(3B, 3F), rs(3K, 3N).

When Row 4 of the regions of page 800 are processed in
accordance with the method 700, since there is only one
group of adjacent dirty regions on the current row, the result
region_sets for Row 4 are: rs(4], 4M).

Similar to Row 4, after the other rows of the regions of page
800 have been processed, the result region_sets for page 800
are as follows:

Row 3: rs(3B, 3F), rs(3K, 3N);

Row 4: rs(4], 4M);

Row 7: rs(7F, TH);

Row 8: rs(8E, 8I);

Row 9: rs(9F, 9G);

Row 13: rs(13B, 13M);

Row 14: rs(14B, 14M);

Row 15: rs(15B, 15M);

Row 16: rs(16B, 16M);

Row 17: rs(17B, 17M);

Row 18: rs(18B, 18M);

Row 19: rs(19B, 19M);

Row 20: rs(20B, 20M);

Row 21: rs(21B, 21M);

After the last row Row 21 of the page 800 is processed in
accordance with the method 700, the method 600 proceeds to
step 610 to get the region_sets from Row 3, and then gets the
region_sets from Row 4 at step 620. At step 630, the processor
105 gets region_sets rs(3B, 3F) from Row 3 and rs(4J, 4M)
from Row 4 as two candidate region_sets to be merged.

At step 640 and 650 of the method 600, the processor 105
tries to merge the two candidate region_sets rs(3B, 3F) and
rs(4], 4M) to be rs(3B, 4M) with (num_total_regions==24;
num_dirty_regions=11). Since (num_dirty_regions/num_
total_regions)~=0.46<merge_threshold (80%), the method
600 proceeds to step 660, does not merge the two candidate
region_sets, and scans from left to right, drops region_set
rs(3B, 3F), and gets the region_set rs(3K, 3N) as the next
candidate region_set.

At steps 640 and 650, the processor 105 tries to merge the
two candidate region_sets rs(3K, 3N) and rs(4], 4M) to be
rs(3], 4N) with (num_total_regions==10; num_dirty_re-
gions==8). Because (num_dirty_regions/num_total_re-
gions)~=0.8>=merge_threshold (80%), the method 600 pro-
ceeds to step 670, merges the two candidate region_sets to be
the new candidate region_set, and proceeds to step 680 to find

10

15

20

25

30

35

40

45

50

55

60

65

20

the next unprocessed region_set from Row 3 and Row 4 of the
page 800. Since there are no more region_sets on rows Row 3
and Row 4, the method 600 goes to step 690 where the
processor 105 merges the region_sets from Row 3 and Row 4
1o one row as:

Row 3: rs(3B, 3F), rs(3J, 4N);

The method 600 then returns to step 620 to get region_sets
on Row 7 as the next row to be merged with the new Row 3
described above. At step 640 and 650, the processor 105 tries
to merge the two candidate region_sets rs(3B, 3F) and rs(7F,
7H) to be rs(3B, 7H) with (num_total_regions=—40; num_
dirty_regions==7). Since (num_dirty_regions/num_total_re-
gions)~=0.18<merge_threshold (80%), the processor 105
does not merge the two candidate region_sets, goes to step
660 and gets the next candidate region_set rs(3J, 4N). Simi-
larly, since the (num_dirty_regions/num_total_regions) is
less than the merge_threshold 80%, the processor 105 does
not merge the candidate region_sets rs(7F, 7H) and rs(3J, 4N).
At step 680, since there are no more unprocessed region_sets
left on Row 3 and Row 7, the method 600 proceeds to step
690. Since there are no merged region_sets, result of the
merging is still as follows:

Row 3: rs(3B, 3F), rs(3J, 4N);

Row 7: rs(7F, 7H);

The method 600 then returns to step 620 to get region_sets
on Row 8 as the next row to be merged with the Row 7. At
steps 640 and 650, the processor 105 tries to merge the two
candidate region_sets rs(7F, 7H) and rs(8E, 81) to be rs(7E,
8D) with (num_total_regions=—10; num_dirty_regions==8).
Since (num_dirty_regions/num_total_regions)=0.8>=mer-
ge_threshold (80%), the method 600 proceeds to step 670,
then to step 690 with the result of the new Row 7 as:

Row 7: rs (7E, 8D);

The method 600 then returns to step 620 to get region_sets
on Row 9 as the next row to be merged with the new Row 7 as
described above. At steps 640 and 650, the processor 105 tries
to merge the two candidate region_sets rs(7E, 81) and rs(9F,
9G) to be rs(7E, 9I) with (num_total_regions=—15; num_
dirty_regions==10). Since (num_dirty_regions/num_total_
regions)~=0.67<merge_threshold (80%), the method 600
proceeds to step 660 and does not merge the two candidate
region_sets. At step 690, since there are no merged region_
sets, the result of the merging is still as follows:

Row 7: rs (7E, 8D);

Row 9: rs (9F, 9G);

The method 600 then returns to step 620 to get region_sets
on Row 13 as the next row to be merged with the Row 9
described above. At step 640 and 650, the processor 105 tries
to merge the two candidate region_sets rs(9F, 9G) and rs(13B,
13M) to bers(9B, 13M) with (num_total_regions—=60; num_
dirty_regions==14). Because (num_dirty_regions/num_to-
tal_regions)~=0.23<merge_threshold (80%), the method 600
proceeds to step 660, does not merge the two candidate
region_sets. At step 690, since there are no merged region_
sets, the result of the merging is still as follows:

Row 9: rs (9F, 9G);

Row 13: rs (13B, 13M);

The method 600 then returns to step 620 to get region_sets
on Row 14 as the next row to be merged with the Row 13
described above. At step 640 and 650, the processor 105 tries
to merge the two candidate region_sets rs(13B, 13M) and
rs(14B, 14M) to be rs(13B, 14M) with (num_total_re-
gions==24; num_dirty_regions==24). Since (num_dirty_re-
gions/num__total_regions)=1>=merge_threshold (80%), the
method 600 proceeds to step 670 then 690 with the result of
the new Row 13 as follows:

US 9,104,352 B2

21

Row 13: rs (13B, 14M);

Similarly, after processing the last row Row 21 of region_
sets, the processor 105 merges all region_sets from Row 13 to
Row 21 to be a new Row 13 as follows:

Row 13: rs (13B, 21M);

At step 620, since there are no new rows to be processed,
the processor 105 proceeds to step 510. The final result from
method 600 is as shown in FIG. 8C. Below is a list of the
merged region_sets to be output after the method 600.

Row 3: rs(3B, 3F), rs(3J, 4N);

Row 7: rs (7E, 81);

Row 9: rs(9F, 9G);

Row 13: rs(13B, 21M);

In another implementation, instead of checking the (num_
dirty_regions/num_total_regions) against a predefined
threshold, the distance between a dirty region and a clean
region is checked against a predetermined distance threshold.
Ifthe distance between the dirty candidate region_set and the
clean candidate region_set is smaller than the predetermined
threshold, then the dirty region and clean region are merged
into one region_set.

FIG. 9 shows the output of the example of FIGS. 8 A and 8B
from the method 500. At step 510, the processor 105 accesses
region_set rs(3B, 3F) stored in the memory 106; renders the
self-retained display list (SRDL) of the area included in the
bounding box of the region_set to an Image 910 at step 520,
then outputs the Image 910 to the printing engine software
module in printer-recognizable format as at step 530. The
method 500 then repeats the steps from step 510, accessing
the region_set rs(3J,4N) stored in the memory 106, rendering
and outputting as Image 920; then accessing the region_set
rs(7E, 8]) from the memory 106, renders and outputs as Image
930; then accesses the region_set rs(9F, 9G), renders and
outputs as Image 940; and accesses the region_set rs(13B,
21M), renders and outputs as Image 950. After all region_sets
are rendered and output to the rendering engine software
module, the method 200 concludes.

INDUSTRIAL APPLICABILITY

The arrangements described are applicable to the computer
and data processing industries and particularly for the image
processing.

The foregoing describes only some embodiments of the
present invention, and modifications and/or changes can be
made thereto without departing from the scope and spirit of
the invention, the embodiments being illustrative and not
restrictive.

In the context of this specification, the word “comprising”
means “including principally but not necessarily solely” or
“having” or “including”, and not “consisting only of”. Varia-
tions of the word “comprising”, such as “comprise” and
“comprises” have correspondingly varied meanings.

The claims defining the invention are as follows:
1. A method of rendering graphical objects on a page, the
method comprising:

marking a region of the page containing a graphical object
as output incompatible based on the graphical object
being output incompatible;

determining a bounding box comprising the marked region
and at least one output compatible region, the output
compatible region containing at least a portion of an
output compatible graphical object;

determining a proportion of a number of the regions
marked as output incompatible to a total number of
regions in the bounding box;

20

30

35

40

45

60

22

marking said at least one output compatible region within
the bounding box as output incompatible if the deter-
mined proportion is above a threshold;
converting the graphical objects in the marked output
incompatible region into an output compatible graphical
object; and
rendering the output compatible graphical object.
2. A system for rendering graphical objects on a page, the
system comprising:
a memory for storing data and a computer program;
a processor coupled to the memory for executing the com-
puter program, the computer program comprising
instructions for:
marking a region of the page containing a graphical
object as output incompatible based on the graphical
object being output incompatible;

determining a bounding box comprising the marked
region and at least one output compatible region, the
output compatible region containing at least a portion
of an output compatible graphical object;

determining a proportion of a number of the regions
marked as output incompatible to a total number of
regions in the bounding box;

marking said at least one output compatible region
within the bounding box as output incompatible if the
determined proportion is above a threshold;

converting the graphical objects in the marked output
incompatible regions into an output compatible
graphical object; and

rendering the output compatible graphical object.

3. An apparatus for rendering graphical objects on a page,
the apparatus comprising:

means for marking a region of the page containing a
graphical object as output incompatible based on the
graphical object being output incompatible;

means for determining a bounding box comprising the
marked region and at least one output compatible region,
the output compatible region containing at least a por-
tion of an output compatible graphical object;

means for determining a proportion of a number of the
regions marked as output incompatible to a total number
of regions in the bounding box;

means for marking said at least one output compatible
region within the bounding box as output incompatible
if the determined proportion is above a threshold;

means for converting the graphical object in the marked
output incompatible regions into an output compatible
graphical object; and

means for rendering the output compatible graphical
object.

4. A non-transitory computer readable medium having a
computer program recorded thereon for rendering graphical
objects on a page, the computer program comprising:

code for marking a region of the page containing a graphi-
cal object as output incompatible based on the graphical
object being output incompatible;

code for determining a bounding box comprising the
marked region and at least one output compatible region,
the output compatible region containing at least a por-
tion of an output compatible graphical object;

code for determining a proportion of a number of the
regions marked as output incompatible to a total number
of regions in the bounding box;

code for marking said at least one output compatible region
within the bounding box as output incompatible if the
determined proportion is above a threshold;

US 9,104,352 B2
23 24

code for converting the graphical objects in the marked
output compatible regions into an output compatible
graphical object; and

code for rendering the output compatible graphical object.

#* #* #* #* #* 5

